
My Super Sweet 16-Bit Malware  
~* MS-DOS *~ Edition

[TSR Remix]

Nika Korchok Wakulich
ic3qu33n

whoami
Twitter: @nikaroxanne
Discord: @ic3qu33n
Mastodon: ic3qu33n@infosec.exchange
Website: https://ic3qu33n.fyi/
GitHub: @nikaroxanne

Security Consultant at Leviathan Security Group
Reverse engineer + artist
I <3 malware, hardware hacking, firmware hacking, skateboarding,  
learning languages, creating art, writing lil assembly programs, etc.

greetz 2 the following for their assistance/support w this talk:
@0daySimpson, Ben Mason (@suidroot), @Laughing_Mantis,
Richard Johnson (@richinseattle), the Rootsyn Discord (@qkumba,
@phlaul and @barbie),  
The team at Leviathan 
BSidesSF

https://ic3qu33n.fyi/projects/mySuperSweet16BitMalwareMSDOSEdition

DISCLAIMER:
The views expressed in this presentation are my own and
do not reflect the opinions of my past, present or future
employers

Viewer Discretion is advised.

What this talk is
[and what this talk is not]

• An introduction to MS-DOS era malware,
including an overview of the MS-DOS
architecture and unique threat landscape

• A starting point for learning about virus
techniques of sophisticated malware of
the 1980s and 1990s

• Not: A complete and thorough
examination of every piece of DOS-era
malware; nor is it an in-depth analysis of
malware targeting other OSes of that era
(Elk Cloner isn’t relevant here, though its
RAM infection techniques are, to my
heart, very dear (deer) (I’ll stop))

Overview
• Introduction

• Motivations [Why would you want to study
malware for an EOL OS?]

• Definitions of terms

• An overview of MS-DOS architecture

• Notable interrupts of MS-DOS malware

• TSR Overview

• Overview of stealth/persistence techniques

• Analysis of notable malware samples

• Connections to modern malware

• Additional resources for continued learning

• Q+A

Motivations
Choose your own adventure

A. Sharpen your reverse engineering skills - these bins are TINY and packed with puzzles

B. become a demoscene icon (I’d rather code in x86 than Rust and I’m not sorry)

C. It looks pretty …why does it look pretty? Why is it infecting the MBR? Is this malware or is this art? is it both??

D. Reversing 16-bit malware has fun side-quests for everyone:

A. Hardware hacking

B. BIOS bb

C. Graphics programming

D. Polymorphism

E. OS development

F. Binary golf

Definitions

• Virus:  
Fred Cohen (credited as being the “creator” of the term “computer virus” as a way to describe
a self-reproducing program, which he used in his 1984 paper “Computer Viruses, Theory and
Experiments.” 
Cohen’s definition was thus: 
 
We define a computer 'virus' as a program that can 'infect' other programs by modifying them
to include a possibly evolved copy of itself. With the infection property, a virus can spread
throughout a computer system or network using the authorizations of every user using it to
infect their programs. Every program that gets infected may also act as a virus and thus the
infection grows. — Fred Cohen, “Computer Viruses, Theory and Experiments,” 1984

• Virus = a self-replicating program that uses a host program to produce those new copies

Definitions

• Polymorphic virus = a virus that uses a variable encryption/decryption routine and a variable key to
create an encrypted copy of itself in memory, which is appended to/inserted into a host file [1]

• The encrypted image of the virus payload (and the encryption routine of the virus itself)
changes with each iteration, so as to avoid/minimize the presence of known byte patterns
used in AV signatures

• Bootkit = A bootkit is a type of malware that infects a critical component of the OS boot process to
install itself and maintain persistence.

• Boot sector infector = the earliest form of bootkit; a BSI is a bootkit that targets storage media that
did not have an MBR (Master Boot Record), and only had a boot sector (hence the name! Surprise!)

• BSI’s targeted various forms of floppy diskettes, which did not use an MBR

[1] Page 318-322 "The Giant Black Book of Computer Viruses. Chapter 27: Polymorphic Viruses” Mark
Ludwig, 2nd ed., American Eagle Books, 1998.

A Whirlwind Tour of MS-DOS

The DOS Kernel
• OS v1.0 debuted in 1981, v6.22 1994

• Some features of MS-DOS include:

• MS-DOS operates in 16-bit real mode

• Provides device-independent device
access to computer resources, using
the key programming interface of MS-
DOS: system functions

• Single-task operating system [only
one program runs at a time]** 
**TSRs are a partial workaround to the
limitations of a single-task OS

“Microsoft MS-DOS Programmer’s Reference,” Microsoft Corporation,
2nd ed.: version 6.0., Microsoft Press, 1993

MS Paintbrush, you don’t look a day over 1989 honey xoxo

The DOS Kernel
• The MS-DOS operating system is

divided into roughly three layers:

• 1. The BIOS (Basic Input/Output
System)

• 2. The DOS Kernel

• 3. The command processor (shell)
— COMMAND.COM

“Advanced MS-DOS Programming: Section 1 - Programming
for MS-DOS,” Ray Duncan, Microsoft Press, 1986

Shell (COMMAND.COM)

DOS Kernel

BIOS

The DOS Kernel
• The DOS kernel provides system functions that

allow a user to perform actions with a provided
collection of hardware-independent services

• These system functions include:

• Memory management

• Spawning programs

• Character device I/O

• File management

• Programs in MS-DOS interact with these system
functions by loading registers with function-
specific values + transferring control using
software interrupts

“Advanced MS-DOS Programming: Section 1 - Programming for MS-
DOS,” Ray Duncan, Microsoft Press, 1986

Shell (COMMAND.COM)

DOS Kernel

BIOS

A Whirlwind Tour of MS-DOS:
Notable Interrupts for Malware

Notable Interrupts for MS-DOS Malware

• System Interrupts (ROM BIOS):

• Int 10h: Video services

• Int 13h: Disk services

• Int 16h: Keyboard services

• MS-DOS Interrupts:

• Int 21h - MS-DOS System Functions

• Int 25h - Absolute Disk Read

• Int 26h - Absolute Disk Write

ROM Bios Interrupts are

05h, and 10h-1Fh

MS-DOS Reserved Interrupts:
20h-3Fh

Notable Interrupts for MS-DOS Malware

• RTFMSDOSS (RTF MS-DOS
Source)

• Because it’s usually beautifully +
succinctly documented by the virus
authors themselves 

• Thanks x a mill Ralf Burger (this is a
beautiful asm file)

“Virdem” by R. Burger, 1989

Interrupt Vector Table
Invoking system calls on MS-DOS

Interrupt Vector Table
Invoking system calls on MS-DOS

Terminate and Stay Resident Programs [TSRs]
• TSR = a feature of MS-DOS that allows a user to bypass the limitations of a single-task OS by installing a persistent

program in RAM, which would be invoked by subsequent interrupts

• In order to install a TSR, one had to modify several components of the Interrupt Vector Table, which was the precursor to
the Interrupt Descriptor Table, and that defined the addresses of all of the 256 interrupts in 8086 real-mode.

• The basic formula went as follows:

1. Find the address of a desired interrupt in the IVT

2. Retrieve both address components of the target interrupt (“address components” = the original segment and the original offset,
because DOS used a segmented addressing scheme)

3. The original interrupt’s address components (segment and offset) are saved to a specific address (i.e. two variables in the data
segment or to some other location in memory, defined by the virus writer)

4. A new interrupt handler is installed in the IVT

5. That new interrupt handler’s interrupt routine concludes by jumping back to the original address and passing control back,
creating the illusion that the original interrupt has proceeded as per usual

More detailed walk-throughs of TSR techniques are available on my website: 
https://ic3qu33n.fyi/projects/16bitm4lw4r3-MSDOS/TerminateStayResidentPrograms-part1 
https://ic3qu33n.fyi/projects/16bitm4lw4r3-MSDOS/TerminateStayResidentPrograms-part2

https://ic3qu33n.fyi/projects/16bitm4lw4r3-MSDOS/TerminateStayResidentPrograms-part1
https://ic3qu33n.fyi/projects/16bitm4lw4r3-MSDOS/TerminateStayResidentPrograms-part2

Interrupt
Vector Table

Hooking
system calls
on MS-DOS

Terminate and Stay Resident Programs [TSRs] - Demo

A Whirlwind Tour of MS-DOS
COM Programs

COM Programs
• .COM programs fit the TINY memory

model of Intel 8086 ISA

• Must always have an origin of 100h
[This is the length of the Program
Segment Prefix or PSP]

• All segment registers contain the same
value — code and data are mixed
together

• No header, no identifying information,
no relocation information

• No parents, no rules! (Not quite, but
almost)

COM Programs
• Max size of .COM program:  

65536 bytes - length PSP (256 bytes) - word
of stack (2 bytes) = 65278 bytes (~63kB)

• .COM resides in memory as an absolute
memory image

• resides (is loaded into) a single segment of
memory [a segment = 64k]

Uses segmented addressing scheme of 16-
bit architecture (again we’re running in 16-bit
real mode, but accessing addresses in a range
of a 20-bit address space)

[segment]:[offset]

Greatest Hits of MS-DOS Malware
or
“Not just a Pretty Payload”

WALKER

MS-DOS malware Techniques in the MITRE ATT&CK Framework
[non-extensive but wow this list looks so boring you wouldn’t know it!]

• Data Manipulation [T1565] https://attack.mitre.org/techniques/T1565/

• Replication through Removable Media https://attack.mitre.org/techniques/T1091/

• Masquerading https://attack.mitre.org/techniques/T1036/004/

• Masquerading: Match Legitimate Name or Location [T1036:005] https://attack.mitre.org/techniques/T1036/005/

• Masquerading: Masquerade Task or Service [T1036:004] https://attack.mitre.org/techniques/T1036/004/

• Data Obfuscation [T1001] https://attack.mitre.org/techniques/T1001/

• System Services [T1569] https://attack.mitre.org/techniques/T1569/

• Direct Volume Access [T1006] https://attack.mitre.org/techniques/T1006/

• File and Directory Discovery [T1083] https://attack.mitre.org/techniques/T1083/

• Boot or Logon Autostart Execution [T1547] https://attack.mitre.org/techniques/T1547/

• Defacement [T1491] https://attack.mitre.org/techniques/T1491/

• Pre-OS Boot: Bootkit

https://attack.mitre.org/techniques/T1565/
https://attack.mitre.org/techniques/T1091/
https://attack.mitre.org/techniques/T1036/004/
https://attack.mitre.org/techniques/T1036/005/
https://attack.mitre.org/techniques/T1036/004/
https://attack.mitre.org/techniques/T1001/
https://attack.mitre.org/techniques/T1569/
https://attack.mitre.org/techniques/T1006/
https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1547/
https://attack.mitre.org/techniques/T1491/

MS-DOS Malware Techniques
Level 10 SAVAGE
Destruction of the

MBR and/or  
boot sector

Exquisite Graphical Rendering/
Data Manipulation

using system functions
Classic Malware  

Stealth 
+ 

Persistence

VX Sources

• vx-underground GitHub — MS-DOS Malware collection: 
https://github.com/vxunderground/MalwareSourceCode/tree/main/MSDOS

• “Internet Archive — Malware Museum,” Mikko Hypponen,  
https://archive.org/details/malwaremuseum  
NOTE: These are defanged binaries, they are useful for preliminary research but lack
the malicious functionality that it interesting from an RE/malware analysis perspective

• The zine archives on VX-UG, primarily 40hex and 29a zine archives 

• A myriad of knowledgeable experts who wish to remain anonymous

https://github.com/vxunderground/MalwareSourceCode/tree/main/MSDOS
https://archive.org/details/malwaremuseum

16-bit Malware RE Methodology
• Preliminary research

• Static Analysis:

• radare2 (I wrote an r2 plugin for automatically identifying interrupts + adding annotations to the disassembly)

• Cutter (for when I’m too tired to use r2)

• IDA Free 5.0 (rip 16-bit support </3)

• Reading the source files (majority of the source files are written in x86 assembly, with syntax specific to a range of assemblers (MASM, TASM,
FASM, A86, etc…)

• Assembling the source using one of the many assemblers

• … or making modifications to the source for use with a different assembler (NASM); mixed results

• Dynamic Analysis:

• QEMU + FreeDOS

• Bochs

• DosBox (more useful for testing sample programs and performing basic analysis, not as flexible as QEMU+FreeDOS which is better for more
involved dynamic analysis)

• *For samples where a compiled binary was not available for dynamic analysis, an auxiliary source of information is danooct1 YouTube channel:
https://www.youtube.com/@danooct1 
Specifically their “MS-DOS malware” playlist:  
https://youtube.com/playlist?list=PLi_KYBWS_E71ObQ8QpGj5zIDXHREbdWaM

https://www.youtube.com/@danooct1
https://youtube.com/playlist?list=PLi_KYBWS_E71ObQ8QpGj5zIDXHREbdWaM

Greatest Hits of
MS-DOS Malware:
The Clash CRASH.COM

CRASH.COM

Infinite loop of pretty animation
Direct write to the VGA buffer makes the
computer unusable and forces a user to
reboot to use their machine

Copies the payload [~*pretty animation on
infinite loop*~] to target files on the
machine

Less destructive ** than other viruses of
the time (especially compared with those
that used this same VGA buffer
technique)

CRASH.COM
WARNING: Mild Flashing Lights

[appx. 6 seconds]

Greatest Hits of MS-DOS Malware
The Kooks KUKU.COM

KUKU

• Searches the filesystem for .exe
and .com files, overwrites them with the
KUKU.COM virus payload

• When executed, displays this obscene
sequence of colorful boxes with the
phrase “Kuku!” to the command
prompt 

• Fun (?) fact: kuku (kyky) means
“peekaboo” in Russian. The virus is
searching for target files to infect and
displaying a message “peekaboo, I see
you!” every time it finds one.

http://KUKU.COM

KUKU

Greatest Hits of MS-DOS Malware
VIRDEM.COM

VIRDEM
• A demo virus written by Ralf Burger (he also wrote this book:

“Computer Viruses and Data Protection: Unclassified,” Ralf Burger,
Abacus Software, 1991) [I bought it on Amazon but there may be
copies online somewhere]

• According to Ralf, the VIRDEM virus does the following:

1. All COM files up to 2nd subdirectory are infected

2. Does not infect 1st COM file in root dir (this 1st COM file is usually
COMMAND.COM)

3. COM files > 1.5kb, length increased by ~1.5kb;  
COM files < 1.5kb, length increased by ~3.0kb

4. “Infected programs remain completely functional” (OKAY RALF)

5. An infected program is recognized and cannot be infected twice

6. VIRDEM.COM inserts an additional function into the infected
program, a bizarre guessing game “whose difficulty level is
dependent on the virus generation”

7. VIRDEM mutates up to the 9th generation, and then stops mutating

**[“Computer Viruses and Data Protection: Unclassified,” Ralf Burger,
pages 210-211]

http://COMMAND.COM
http://VIRDEM.COM

VIRDEM

Greatest Hits of MS-DOS Malware
STONED.COM

STONED
• Famous bootkit — inspired a range of related

bootkits in this virus family, of varying levels of
sophistication  
[Michelangelo, what an absolute flop]

• Able to infect boot sectors of multiple different
formats of storage media (routines for both floppy
diskettes, and for hard drives)

• Stealth

• Saved the original MBR on a hidden area of the
disk

• Spoofed valid INT 13h reads/writes with a TSR

• Logic bomb - only displayed the famous “Your PC is
now Stoned!” message 1/8 times (using PC timer)

Greatest Hits of MS-DOS Malware
Margaritaville TEQUILA.COM

TEQUILA

• Fractal animation (Mandelbrot)

• Savage - infects MBR partition
table and installs interrupt
handlers to run as a TSR

• What’s with the  
“Mov ax FE03 / INT 21”
instruction??

• Multi-part payload — requires
user interaction to reveal …

TEQUILA

Greatest Hits of MS-DOS Malware
Yellow Submarine MARINE.COM

MARINE

• LEVEL 10 Savage

• Several different payloads, which trigger
based on conditions of the virus’ various
logic bombs

• The most brutal payload shreds the
MBR while a little boat animation plays

• Specifically it encrypts the drive

• “Bcë na mope” in Russian means
“everyone to the ocean” but the vibe is
basically like…

MARINE

Let’s go to the beach,
beach

MARINEВсе хорошо

 

Nothing bad happening
to the drive rn

MARINE

Why Study an EOL OS?

“Once in a Lifetime,” The Talking Heads, 1980

Malware — same as it ever was…

Why Study MS-DOS malware?
• Foundational techniques of malware masters of the ‘80s and ‘90s inform malware

techniques up to the present day

• For one, legacy BIOS interrupts featured prominently in malware like bootkits through
much later versions of Windows [specifically through Windows 7 before the switch to UEFI
from the legacy boot process]

• Relevant case study: NotPetya

• Prominent use of the INT 13h BIOS interrupt to call disk services functions  

• And while the switch to UEFI firmware from the legacy boot process (meaning the use of
legacy BIOS interrupts) effectively changed the landscape for Windows bootkits, modern
bootkits still use techniques that were developed by the earliest bootkit writers in the “BSI
heyday”

“Rootkits and Bootkits: Reversing Modern Malware and Next Generation Threats,” Alex Matrosov, Eugene Rodionov, and Sergey Bratus

Why Study MS-DOS malware?
• “Different names for the same thing” — reusing the IVT in its new incarnation, the IDT, for similar malicious

activity

• Rovnix, reusing the IDT above 0x80 (Bootkit from 2011)[1]

• Become inspired to rewrite an old classic and show that a modern OS can still be vulnerable to boot
process exploits due to its backwards compatibility with the legacy BIOS boot process

• The Stoned Bootkit… at Blackhat 2012  

• And while the IVT got upgraded to the IDT, it remained a useful data structure to leverage for hooking
system calls on later versions of Windows; the IDT and SSDT (System Service Descriptor Table) were both
used to this effect. And hooking the SSDT and IDT were techniques employed by rootkits of the Windows
NT rootkit heyday [2]

• Looking into the past can give you ideas for where to search for inspiration for exploits next, and which
vectors are ignored now but were favorites in past eras.

[1]“Rootkits and Bootkits: Reversing Modern Malware and Next Generation Threats,” Alex Matrosov, Eugene Rodionov, and Sergey Bratus
[2]“Rootkits: Subverting the Windows Kernel” by Greg Hoglund and James Butler, page 82-95, “Chapter 4:The Age-Old Art of Hooking.”

Where to now?
• I have a repo on GitHub with some sample COM programs, learning resources, a guide

for setting up a reversing lab:  
https://github.com/nikaroxanne/supersweet16bit-m4lw4r3

• Check out my website for deep-dive blog posts exploring specific subtopics (i.e. TSRs,
early bootkits, etc.):  
https://ic3qu33n.fyi/projects/mySuperSweet16BitMalwareMSDOSEdition

• I’ve written an r2 plugin for reversing 16-bit binaries (specifically malicious COM files);
contact me on one of the socials (on in person after the talk) if you would like to be
involved in ~*test driving*~ the r2 plugin

• I made you a playlist for when you’re reversing 16-bit malware: 
https://open.spotify.com/playlist/7KKMdu8JaLEoLV66uZqKG0?si=bf876ac6c71f4ecf  
[If you are adamantly opposed to Spotify as a platform, then provide me with your
medium of choice and I will burn you a copy. Bonus points if that medium of choice is a
FAT stack of floppy disks (someone better appreciate this joke I stg)]

https://github.com/nikaroxanne/supersweet16bit-m4lw4r3
https://ic3qu33n.fyi/projects/mySuperSweet16BitMalwareMSDOSEdition
https://open.spotify.com/playlist/7KKMdu8JaLEoLV66uZqKG0?si=bf876ac6c71f4ecf

References
“Advanced MS-DOS Programming,” Ray Duncan, Microsoft Press, 1986

“Microsoft MS-DOS Programmer’s Reference,” Microsoft Corporation, 2nd ed.: version 6.0., Microsoft Press, 1993

"The Giant Black Book of Computer Viruses," Mark Ludwig, 2nd ed., American Eagle Books, 1998.

"Rootkits and Bootkits: Reversing Modern Malware and Next Generation Threats,”Alex Matrosov, Eugene Rodionov, and
Sergey Bratus, No Starch Press, 2019

“Computer Viruses and Data Protection: Unclassified,” Ralf Burger, Abacus Software, 1991

“A Look Back at Memory Models in 16-bit MS-DOS,” Raymond Chen, The Old New Thing, Microsoft Blogs, July 28, 2020,  
 https://devblogs.microsoft.com/oldnewthing/20200728-00/?p=104012

“On Memory Allocations Larger Than 64KB on 16-Bit Windows,” Raymond Chen, The Old New Thing, Microsoft Blogs,
https://devblogs.microsoft.com/oldnewthing/20171113-00/?p=97386

 “Retired Malware Samples, Everything Old is New Again,” Lenny Zeltser, August 1, 2018.  
https://zeltser.com/retired-malware-samples-retrospective/

https://devblogs.microsoft.com/oldnewthing/20200728-00/?p=104012
https://devblogs.microsoft.com/oldnewthing/20171113-00/?p=97386
https://zeltser.com/retired-malware-samples-retrospective/

